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Secondary flow in a Hele-Shaw cell
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We examine the flow in a horizontal Hele-Shaw cell in which the undisturbed
unidirectional flow at infinity is required to stream around a vertical cylinder spanning
the gap between the two (horizontal) plates of the cell. A combination of matched
asymptotic expansions and numerical methods is employed to elucidate the structure
of the boundary layer near the surface of the cylinder. The two length scales of the
problem are the gap, h, and the length of the body, l ; it is assumed that h}li 1. The
characteristic Reynolds number based on l is O(1). The length scales associated with
the boundary layer and the classical Hele-Shaw flow pattern are O(h ) and O(l ),
respectively.

It is found that the boundary layer contains streamwise vorticity. This vorticity is
generated at the three no-slip surfaces (the two plates and the cylinder wall) as a result
of the cross-flow induced by the streamwise acceleration}deceleration of the flow
around the curved cylinder. The strength of the secondary flow, hence the associated
streamwise vorticity, is proportional to changes in body curvature. The validity of the
classical Hele-Shaw flow is examined systematically, and higher-order corrections are
worked out. This results in a displacement thickness that is roughly 30% of the gap.
In other words, the lowest-order correction to the classical Hele-Shaw flow may be
obtained by requiring the outer flow (on the scale O(l )) to satisfy the no-penetration
boundary condition on a displaced cylinder surface. The boundary layer contains
‘corner ’ vortices at the intersections of the horizontal plates and the vertical cylinder
surface.

1. Introduction

The flow in a classical Hele-Shaw cell has many interesting features. Although a
typical flow pattern in the cell is strongly controlled by viscous diffusion, inertial effects
do appear as small corrections in powers of the (small) Reynolds number, Re¯
U

ref
h}ν, where h is the gap and U

ref
and ν denote a characteristic reference speed and

the kinematic viscosity of the fluid, respectively. Paradoxically, the flow around a ver-
tical cylinder in a horizontal Hele-Shaw cell (see figure 1) is often used to visualize the
in�iscid (i.e. two-dimensional potential) flow pattern around the same geometry (Hele-
Shaw 1898; Van Dyke 1982, p. 8). As experimentally demonstrated by Hele-Shaw, in
going from a ‘thin sheet of water to a thick sheet ’ (i.e. increasing h), the flow in a
sudden enlargement shows how a ‘perfectly incompressible and frictionless fluid’
would behave in this geometry and how this flow gradually transforms into a flow with
‘eddies and whirls [which] plainly indicate why it is that such large loss of energy occurs
under these conditions in a pipe’ (Hele-Shaw 1898, p. 35).

Of course, the broad features of the flow in a Hele-Shaw cell are tractable
mathematically and, therefore, very well understood. Indeed, the heuristic theory
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presented by Lamb (1932, p. 582) is elegant and to the point. Yet, it is equally to the
point that this theory cannot be valid near the surface of the object around which the
flow is streaming because of the no-slip boundary condition. Thus there is a thin layer
of fluid of thickness O(h ) near the surface of the object that must behave very
differently to that described by Lamb and others (Pozrikidis 1997, p. 245). It is the
purpose of this paper to explain this behaviour using modern asymptotic techniques;
this opens up the way for systematically extending the present work in many different
directions. The use of singular perturbation methods in fluid mechanics is very well
known; for low-Reynolds-number flow one citation suffices (Cox & Brenner 1967).

The classical theory becomes exact as hU 0 for a fixed l (l is the characteristic size
of the body; see figure 1), but only in that part of the flow that is at a distance O(l ) from
the body. For distances substantially smaller than this (i.e. of O(h)), the flow on the two
plates of the Hele-Shaw cell and that on the surface of the body interact to form a much
more complicated and interesting pattern containing four ‘corner vortices ’ (see figure
8). The existence of these vortices implies a secondary flow in the (y, z) cross-plane and
the development of streamwise (x-component) vorticity. These phenomena are
contained in a thin (compared to l ) layer of fluid, which we term the boundary layer.
Alternatively, this layer of fluid may be thought of as the distance over which the
influence of the cylinder makes itself known within the lubrication approximation.

Low-Reynolds-number flows occur in many applications; the dynamics of thin
liquid layers or films play important roles in industrial processes employing coatings
and film deposition or levelling (Langlois 1964; Happel & Brenner 1973). More
recently, the development of micro-mechanical devices and various types of
manufacturing processes (e.g. crystal growth) is providing a new impetus for the
numerical calculation of creeping flows (Pozrikidis 1992) using boundary element and
finite element methods.

The outline of the paper is as follows: the problem is formulated in §2 and, in §3
the outer flow is studied. This is the classical Hele-Shaw flow and its asymptotic
corrections for non-vanishing Reynolds number. Section 4 focuses on the inner flow
(the boundary layer) and the canonical boundary layer profile associated with the
velocity components. One aspect of the inner flow, the secondary flow, is treated
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separately in §5 using theoretical and numerical methods. A discussion and
conclusions follow in §6.

2. Formulation of the problem

Consider a Hele-Shaw cell formed by two infinitely large horizontal plates separated
by a distance h in the vertical direction. The geometry of the configuration and the
coordinate system, x¯ (x, y, z), are shown in figure 1. Under the assumption that the
fluid density, ρ, and viscosity, µ, are constants, the flow is described by the
Navier–Stokes equations. Let distances, velocities, and pressures be normalized by h,
U

ref
, and (µU

ref
}h), respectively, where U

ref
is a characteristic reference speed of the

fluid. Neglecting the effects of gravity and taking the flow to be steady, we write the
governing equations:

continuity ¡[u¯ 0. (1a)

momentum Reu[¡u¯®¡p­¡#u, (1b)

where u¯u(x) and p¯ p(x) denote the fluid velocity and pressure, respectively. The
Reynolds number Re¯ hU

ref
}νi 1, where ν¯µ}ρ is the kinematic viscosity. In (1b),

and only there, ~#¯ ¥#}¥x#­¥#}¥y#­¥#}¥z# denotes the ‘ full ’ Laplacian. The
undisturbed flow in the Hele-Shaw cell is produced by a constant pressure gradient
whose only non-zero component (the x-component) will be specified shortly. The flow
so induced is required to stream around a vertical cylinder (figure 1) described by:

z¯ f (εx), (2)

where f¯O(1), ε¯ h}li 1, and l denotes the (dimensional) streamwise length scale of
the body.

The two small parameters of this problem are the geometric parameter ε¯ h}l and
the dynamic parameter Re¯ hU

ref
}ν. In the solution, the smallness of these parameters

will be exploited by the use of asymptotic methods. To eliminate the need for a two-
parameter asymptotic expansion, we set Re¯ ε2 with 2¯O(1) denoting the scaled
Reynolds number. This implies that the Reynolds number based on the streamwise
length scale, l, is of order unity. It should be noted, however, that the cross-stream (i.e.
z) extent of the cylinder in physical units is O(h ), that is, the cylinder is slender. This
makes the boundary layer analysis near the surface of the cylinder tractable by
avoiding geometric complexities arising from the use of a body-fitted coordinate
system; in essence, [z®f(εx)] serves as the normal component of a boundary layer
coordinate system. A nice feature of this assumption is the result that the essential
physics of the flow in the boundary layer, including the secondary flow and associated
streamwise vorticity, are universal. Additionally, for such a slender body, changes in
curvature are large; these changes drive the secondary flow.

The undisturbed flow, denoted by the subscript ¢ and existing as (x, z)U¢, is given
by:

u¢ ¯ "

#
(y®y#) i, p¢ ¯®x, (3a, b)

where (i, j,k) are the unit vectors along the coordinate axes. This flow is the classical
unidirectional and fully developed flow in the gap 0! y! 1; it satisfies the no-slip
boundary condition on the horizontal plates at y¯ 0, 1. The pressure gradient is a
constant, -i, and the volumetric flow rate (per unit z) is U

ref
h#}12.

The no-slip boundary condition on all surfaces dictates u¯ 0; the boundary
conditions at infinity require uUu¢ and pU p¢. Because there are two length scales in
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the problem, namely h and l, the asymptotic expansion will be of the ‘matched’ type.
In the inner region, the streamwise length scale is l, whereas the cross-stream scale is h
in physical units. This region is defined by:

inner region ξ¯ εx¯O(1), y, z¯O(1). (4a, b)

The inner region contains the boundary layers and their interactions on the three no-
slip surfaces : y¯ 0, y¯ 1 and z¯ f(ξ ). In the outer region, the streamline length scale
is again l, the distance from the cylinder is also l, whereas the vertical distance scales
on h. This region is defined by

outer region ξ¯ εx¯O(1), ζ¯ εz¯O(1), y¯O(1). (5a–c)

We refer to the inner region as a (generalized) boundary layer in the sense that its cross-
stream thickness, O(h), is small compared to the body size, O(l ) ; h}l¯ εi 1. Of
course, the physical and mathematical characteristics of this boundary layer are
nothing like those at high Reynolds number. In particular, boundary-layer separation
cannot occur in the present problem.

3. The outer region

The flow in the outer region is essentially the classical Hele-Shaw flow (Batchelor
1967, p. 222). Using outer variables (5), we represent the expansion of the dependent
variables u¯ (u, �,w) and p by:

velocity u¯ u(!)­εu(")­ε#u(#)­ε$u($)­…, (6a)

�¯ ε&(�(!)­…), (6b)

w¯ε(w(!)­εw(")­ε#w(#)­…) ; (6c)

pressure p¯ ε−"(p(!)­εp(")­ε#p(#)­ε$p($)­…), (6d )

where all superscripted quantities depend (at most) on the outer variables (ξ, y, ζ ) ; note
that

¥
¥x

¯ ε
¥
¥ξ

,
¥
¥z

¯ ε
¥
¥ζ

. (7a, b)

The fact that p¯O(ε−") is dictated by the flow at infinity, (3). After substituting (6) into
governing equations (1), recalling that Re¯ ε2¯O(ε), and collecting like powers of
ε, we find a sequence of equations for the expansions of the dependent variables given
above. The lowest-order solution is trivial at O(ε!) :

u(!)¯ "

#
(y®y#), p(!)¯®ξ. (8a, b)

This is the given undisturbed flow, (3), in the region (x, z)U¢.
At the next order in the expansion, O(ε), the governing equations are

continuity
¥u(")

¥ξ
­

¥w(!)

¥ζ
¯ 0; (9a)

momentum
¥p(")

¥ξ
¯

¥# u(")

¥y#

,
¥p(")

¥y
¯ 0,

¥p(")

¥ζ
¯

¥#w(!)

¥y#

. (9b–d )

The solutions of the three momentum equations, (9c) and (9b, d ) respectively, are

p(")¯ p(")(ξ, ζ), u(")¯®"

#
(y®y#) p(")

ξ , w(!)¯®"

#
(y®y#) p(")

ζ , (10a–c)
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where the subscripts ([)ξ and ([)ζ denote the partial derivatives ¥}¥ξ and ¥}¥ζ.
Substituting the above into continuity (9a), we find

p(")
ξξ ­p(")

ζζ ¯ 0. (10d )

The flow represented by (10) is the classical Hele-Shaw flow; it fails to satisfy the no-
slip boundary condition on the cylinder surface since this would imply, in conjunction
with (8a), that both p(")

ξ and p(")
ζ could be specified independently on z¯ f(ξ ). This is

impossible for the Laplace equation (10d ). Note, however, that the boundary
condition for (10d ) at infinity, (ξ, ζ )U¢, is p(")U 0.

At O(ε#), the equations and solutions for (u(#), w(")) and p(#) are identical to those in
(9) and (10). Specifically, p(#)¯ p(#)(ξ, ζ ) and

p(#)
ξξ ­p(#)

ζζ ¯ 0, (11)

with p(#) vanishing at infinity. In general, the need for a non-trival p(#) arises from the
structure of the inner solution (see §4). The velocity components are obtained from
(10b, c) after incrementing the values of the superscripts by (­1).

The departure from the classical Hele-Shaw flow occurs at the next order, O(ε$). The
governing equations are

continuity
¥u($)

¥ξ
­

¥w(#)

¥ζ
¯ 0, (12a)

momentum 2u(!)
¥u(")

¥ξ
¯®

¥p($)

¥ξ
­

¥#u($)

¥y#

, (12b)

¥p($)

¥y
¯ 0, 2u(!)

¥w(!)

¥ξ
¯®

¥p($)

¥ζ
­

¥#w(#)

¥y#

. (12c, d )

In deriving the viscous terms in (12b, d ), the vanishing of (u(")
ξξ ­u(")

ζζ ) and (w(!)
ξξ ­w(!)

ζζ )
is invoked. The solutions of (12c) and (12b, d ) are

p($)¯ p($)(ξ, ζ), u($)¯
¥Φ
¥ξ

,w(#)¯
¥Φ
¥ζ

, (13a–c)

where

Φ¯®"

#
(y®y#) p($)®

2

120 0y'®3y&­
5y%

2
®

y

21 p(")
ξ . (13d )

After substituting (13b, c) into continuity equation (12a), we find

p($)
ξξ ­p($)

ζζ ¯ 0, (13e)
with p($) vanishing at infinity.

To the required order of accuracy, the pressure is harmonic in the variables (ξ, ζ) and
the horizontal velocity components (u,w) depend on the vertical coordinate y
according to polynomial expressions. The correction to the classical Hele-Shaw flow
occurs because of finite (but small) Reynolds number effects owing to nonlinear
convection; this result is in (13d ). The vertical velocity, �, is exceedingly small,
although it cannot be identically zero because of the dependence of the undisturbed
flow, u¢, on y. The importance of the vertical velocity could be forced into the lower-
order terms by allowing the geometry of the body to vary slowly in the y-direction. In
this case, the y-dependence in the solution would manifest itself both on the ‘fast ’ scale,
y, and on some ‘slow’ scale, εy, say.

In summary, the key equation in the outer region is

0 ¥#

¥ξ#
­

¥#

¥ζ #
1 p(j)¯ 0, j¯ 1, 2, 3, (14)
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with boundary conditions p(j) U 0 as (ξ, ζ )U¢. In order to solve these equations,
additional boundary conditions are needed; these come from the geometry of the
cylinder or, more precisely, from the behaviour of the inner flow. The results are
discussed in §4.

4. The inner region

Although the flow in the inner region is novel, only certain features of this flow are
interesting and dynamically significant. These are the secondary flow pattern in the
viscous layers near the surface of the body and the attendant streamwise vorticity in
the boundary layers on the three surfaces. Using inner variables (4), we represent the
expansion of the dependent variables :

velocity u¯ uW (!)­εuW (")­…, �¯ ε#(�W (!)­…), w¯ ε(wW (!)­εwW (")­…) ; (15a–c)

pressure p¯ ε−"(pW (!)­εpW (")­ε#pW (#)­ε$pW ($)­…), (15d )

where all superscripted quantities depend (at most) on the inner variables (ξ, y, z). The
caret associates a quantity with the inner region.

After substituting (15) into governing equations (1) and collecting like powers of ε,
we arrive at a sequence of equations for ( # )(j), j¯ 0, 1,… . At lowest order, O(ε!), we find

continuity
¥uW (!)
¥ξ

­
¥wW (!)
¥z

¯ 0; (16a)

momentum
¥pW (!)
¥ξ

¯~#uW (!),
¥pW (!)
¥y

¯
¥pW (!)
¥z

¯ 0, (16b–d )

where ~#¯ (¥#}¥y#­¥#}¥z#) is the Laplacian in cross-space. The implication of (16c,
d ) is that pW (!)¯ pW (!)(ξ), and asymptotic matching of the pressure with that in the outer
region dictates

pW (!)¯®ξ. (17)

The pressure gradient of the outer flow is impressed on the inner boundary layers, as
is known from lubrication theory. The solution of (16b) for the boundary layer profile,
uW (!), is straightforward by (finite) Fourier sine-transform (equation (A 2) in the
Appendix). Thus, we wish to solve

~#uW (!)¯®1, (18a)

with the no-slip boundary condition, uW (!)¯ 0 on y¯ 0, y¯ 1, and z¯ f(ξ ). This
solution will be valid in the range ξ

LE
! ξ! ξ

TE
, where ξ

LE
and ξ

TE
denote the

streamwise coordinates of the leading and trailing edges of the body. Separate analyses,
not discussed herein, are required in the local regions rξ®ξ

LE
r¯O(ε) and rξ®ξ

TE
r¯

O(ε), and in the wake region downstream of the cylinder.
The solution of (18a) that matches with the outer velocity component, u(!), is

uW (!)¯
4

π$

"(y,Z), (18b)

where " is the canonical boundary layer profile (which will arise several more times),

"(y,Z)¯ 3
¢

n=",$,&
…

sin nπy

n$

²1®e−nπZ´, (18c)
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with
Z¯ z®f(ξ) (18d )

denoting the boundary layer coordinate (approximately) perpendicular to the cylinder
surface. Note that the dependence of uW (!) on the streamwise coordinate, ξ, is only
parametric. The first term on the right-hand side of (18c) represents the Fourier sine-
series of the parabolic profile π$(y®y#)}8. Contours of the canonical velocity profile
are shown in figure 2. Note the higher density of the contours near the three solid
surfaces : yE 0, yE 1, and ZE 0. At this order, the flow is completely dominated by
viscous diffusion, and inertia effects are negligible. For f¯ 0, (18b) gives the fully
developed velocity profile between the two horizontal plates bounded by a vertical
surface at z¯ 0. This is known from lubrication theory.

Using (18b) for uW (!) in continuity equation (16a) and integrating with respect to z,
we arrive at

wW (!)¯
4f «(ξ)

π$

"(y,Z), (18e)

where f «(ξ)¯df}dξ is the body slope and the no-slip boundary conditions have been
enforced. In order for wW (!) to match with the outer solution (10c), we must have

p(")
ζ (ξ, 0)¯®f «(ξ). (19)

Equation (19) completes the central idea behind the classical Hele-Shaw flow; the
outer flow on the length scale l may be found by solving (10d ) for p(") subject to
boundary condition (19) and null value at infinity. For our slender body, (19)
expresses the condition of impenetrability : the normal component of the outer velocity
field vanishes at the body surface. This will be discussed much more fully in §4.2.

4.1 Higher-order corrections

At the next three orders, the problem becomes intricate and interesting. At O(ε), the
perturbation expansion yields

continuity
¥�W (!)
¥y

­
¥wW (")
¥z

¯®
¥uW (")
¥ξ

; (20a)

momentum
¥pW (")
¥ξ

¯~uW ("),
¥pW (")
¥y

¯
¥pW (")
¥z

¯ 0. (20b–d )
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At O(ε#),

(y, z) momentum
¥pW (#)
¥y

¯ 0,
¥pW (#)
¥z

¯~#wW (!). (21a, b)

At O(ε$) ,

(y, z) momentum
¥pW ($)
¥y

¯~#�W (!),
¥pW ($)
¥z

¯~#wW ("). (22a, b)

All other equations in the perturbation expansion are irrelevant for our purposes. Of
particular significance is the coupled system (20a), (22a, b), which determines the
secondary flow pattern, with velocity �W (!)j­wW (")k, in the (y, z) cross-space. This
problem will be discussed in the next section; first, however, we must solve for uW (") using
(20b–d ).

Observe that pW (")¯ pW (")(ξ), so this correction to the pressure is determined by
matching with that in the outer flow. The result is

pW (")¯ p(")(ξ, 0), (23a)

and (20b) provides a correction for the boundary layer of the streamwise velocity
profile owing to this additional pressure gradient induced by the body. Recall that the
undisturbed flow also induces a pressure gradient ; the corresponding boundary layer
was captured in uW (!). The solution is

uW (")¯®
4p(")

ξ (ξ, 0)

π$

"(y,Z). (23b)

This satisfies the no-slip boundary conditions on the surfaces and matches with the
outer flow, (10b).

The solution for pW (#) is needed in order to carry out the asymptotic matching of the
pressure to the order of accuracy explicitly written out in expansions (6d ) and (15d )
and to determine the behaviour of pW ($) as zU¢. From (21a, b) and (18e), we find

pW (#)¯®f «(ξ) z­p(#)(ξ, 0), (24a)

where the second term on the right-hand side of (24a), a constant of (partial)
integration depending on ξ only, has been obtained by matching with the outer
pressure truncated after O(ε).

Now consider the inner asymptote of the outer pressure (6d ), including the
additional term ε#p($). From this, we deduce the behaviour of the pressure in the inner
region as zU¢,

pW ($)U p(")
ζζ (ξ, 0)

z#

2
­p(#)

ζ (ξ, 0) z­p($)(ξ, 0)3 pW ($)¢ , (24b)

which, according to (22a, b), induces the velocity fields, also in the region zU¢,

�W (!)U 03 �W (!)¢ , (25a)

wW (")U®
4

π$

p(")
ζζ (ξ, 0) 3

¢

n=",$,&
…

sin nπy

n$

²z®f(ξ) e−nπZ´®
4

π$

p(#)
ζ (ξ, 0)"(y,Z)3wW (")¢ ,

(25b)

where (25b) has been obtained by using a finite Fourier sine-transform on (22b) with
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¥pW ($)}¥z calculated from (24b). It is convenient to include the exponentially small terms
in (25b) so that wW (")¢ will satisfy the no-slip boundary condition on all surfaces,
including z®f(ξ)¯Z¯ 0.

The departure of the actual inner flow at this order from (24b) and (25) represents
the true secondary flow. Thus we write

pW ($)¯ pW ($)¢ ­pW k, �W (!)¯ 0­�W k, wW (")¯wW (")¢ ­wW k, (26a–c)

with the understanding that ( # )kU 0 as zU¢ and (�W k, wW k) vanish on all three surfaces
(i.e. no-slip). The relevant equations for the secondary flow may be obtained from
(20a) and (22a, b) :

continuity

¥�W k
¥y

­
¥wW k
¥z

¯®
¥uW (")
¥ξ

®
¥wW (")¢

¥z
¯®

4

π$

p(")
ξξ (ξ, 0) 3

¢

n=",$,&
…

sin nπy

n$

e−nπZ®R(ξ, y,Z) ; (27a)

momentum
¥pW k
¥y

¯~#�W k,
¥pW k
¥z

¯~#wW k ; (27b, c)

where

R(ξ, y,Z)¯
4

π#

²p(")
ξ (ξ, 0) f «(ξ)®p(")

ζζ (ξ, 0) f(ξ)®p(#)
ζ (ξ, 0)´ 3

¢

n=",$,&
…

sin nπy

n#

e−nπZ.

(27d )

Note that ¥}¥z may be replaced by ¥}¥Z. The final expression on the right-hand side
of (27a) comes from evaluating (®¥uW (")}¥ξ®¥wW (")¢ }¥z) using (23b) and (25b).

A necessary condition for the existence of the solution is that the integral of the right-
hand side of (27a) shall vanish, specifically

&"

!

&
¢

f(ξ)

…dzdy¯&"

!

&
¢

!

…dZdy¯ 0. (28)

In other words, the total mass source is zero since there is no mass flux across the
surface z¯ const.U¢. This solvability condition determines the inner boundary
condition for the next correction to the outer pressure, p(#),

p(#)
ζ (ξ, 0)¯ p(")

ξ (ξ,0)
d

dξ (f(ξ)­
γ

π*­p(")
ξξ (ξ, 0) (f(ξ)­γ

π* , (29a)

where

γ¯ const.¯ 3
¢

n=",$,&
…

1

n&
5 3

¢

n=",$,&
…

1

n%

E 0±989993. (29b)

The physical interpretation of (29a) will be given shortly.
Using (29a) in (27d ) and then the latter in continuity equation (27a), we find the

following rearrangement:

¥�W k
¥y

­
¥wW k
¥z

¯®p(")
ξξ (ξ, 0) 3

¢

n=",$,&
…

A
n
sin nπy e−nπZ, (30a)

where

A
n
¯

4

π$
0 1

n$

®
γ

n#
1 , n¯ 1, 3, 5,… . (30b)

The solution of (30a) and (27b, c) for the secondary flow will be given in §5.
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4.2. The displacement thickness

For the physical interpretation of boundary condition (29a), as well as (19), consider
a fictitious cylinder whose equation is

z¯&(ξ). (31a)
The outward normal is

n¯®ε& «(ξ) i­k, & «¯d&}dξ. (31b)

The condition of impenetrability of the outer flow on this surface is

u[n¯ 0 on z¯&, (32a)
or

®& «(ξ)²1®εp(")
ξ (ξ, ε& )­…´­²®p(")

ζ (ξ, ε& )®εp(#)
ζ (ξ, ε& )­…´¯ 0, (32b)

after substituting the outer velocity components, (8a) and (10b, c), into (32a).
Expanding (32b) in ε yields

at O(ε!) p(")
ζ (ξ, 0)¯®& «(ξ) ; (33a)

at O(ε) p(#)
ζ (ξ, 0)¯ p(")

ξ (ξ, 0)& «(ξ)®p(")
ζζ (ξ, 0)&(ξ). (33b)

Upon comparing (33a) with the actual boundary condition, (19) obtained from
asymptotic matching, we find that, at lowest order, the surface &(ξ) is the actual body
surface f(ξ). On the other hand, after comparing (33b) with the actual boundary
condition at the next order, (29a), we observe that the fictitious surface on which the
no-penetration boundary condition for the correction in the outer flow is satisfied is the
displaced surface &(ξ)¯ f(ξ)­γ}π. We interpret γ}πE 0±32 as the displacement
thickness ; in physical units, it is about 30% of the gap h. The constancy of the
displacement thickness (i.e. its independence of x) is due to a favourable pressure
gradient impressed on the boundary layers by the undisturbed flow.

5. The secondary flow

In the inner region, the secondary flow velocity (�W k j­wW kk), and therefore implicitly
the concomitant streamwise vorticity, is described by (30a) and (27b, c). These
equations reveal that the dependence of the solution on the streamwise coordinate, ξ,
is parametric, therefore, a very convenient rescaling is possible. Define

�W k¯ p(")
ξξ (ξ, 0) �(y,Z), wW k¯ p(")

ξξ (ξ, 0)w(y,Z), pW k¯ p(")
ξξ (ξ, 0) p(y,Z). (34a–c).

Note the use of �, w and p in this section to denote the scaled secondary flow. The
relevant equations become (¥}¥z¯ ¥}¥Z) :

continuity
¥�
¥y

­
¥w
¥Z

¯® 3
¢

n=",$,&
…

A
n
sin nπy e−nπZ, (35a)

momentum
¥p
¥y

¯~#�,
¥p
¥Z

¯~#w, (35b, c)

where ~#¯ ¥#}¥y#­¥#}¥Z#. The velocity components, (�,w), vanish on y¯ 0, y¯ 1,
and Z¯ 0, and (�,w, p)U 0 as ZU¢. The task ahead of us is to solve these equations.
We find it physically and mathematically convenient to divide the solution into five
parts ; four of them can be obtained analytically, whereas the fifth one is obtained
numerically. Next, we shall write down these solutions.

A remarkable property of the scaled secondary flow is its universality ; when written
in terms of (y,Z), Z¯ z®f(ξ), the flow is independent of all parameters and of the
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geometry of the cylindrical body; see (35). Because of the presence of the mass source
on the right-hand side of (35a), a stream function, so helpful in the solution of low-
Reynolds-number flows, does not exist. It is, however, possible to construct one by first
extracting the effects of the mass source using a velocity potential. Write

w¯
¥φ
¥Z

­
¥ψ
¥y

, �¯
¥φ
¥y

®
¥ψ
¥Z

, (36a, b)

where φ¯φ(y,Z) is the potential and ψ¯ψ(y,Z) is the stream function.

5.1. The �elocity potential

Clearly, from (35a),

~#φ¯® 3
¢

n=",$,&
…

A
n
sin nπy e−nπZ, (37a)

for which we enforce boundary conditions: n[¡φ¯ 0 on surfaces y¯ 0, y¯ 1, and
Z¯ 0, and φU 0 as ZU¢. The solution may be obtained by Fourier cosine-transform
(A 1),

φ¯
4

π$
3
¢

n=#,%,'
…

β
n
cos nπy

n
e−nπZ®

1

2π#
3
¢

n=",$,&
…

A
n
sin nπy

n#

e−nπZ

­
y®"

#

2π 3
¢

n=",$,&
…

A
n
cos nπy

n
e−nπZ, (37b)

where constants A
n
(n¯ 1, 3,…) and β

n
(n¯ 2, 4,…) are defined in (30b) and (A 4),

respectively. Note that the first two terms in (37b) satisfy Laplace’s equation and the
third term is a particular solution.

The equipotential lines are shown in figure 3. Here, the correct boundary conditions
on φ are confirmed pictorially. The slip velocity, ¥φ}¥y, on Z¯ 0 is generally toward
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F 4. Boundary conditions for the stream function ψ(y,Z).

the middle of the gap (y¯ 0±5) except in the immediate vicinity of the corners at yE
0 and yE 1; in these local regions, the flow is toward the corners. The slip velocity,
¥φ}¥Z, on the horizontal planes y¯ 0, 1 is in the ­Z-direction: from the corners to
infinity. The maximum value of this velocity component occurs at ZE 0±14. The
reason for symmetry about the mid-gap location (y¯ 0±5) is obvious physically.

5.2. The stream functions

The purpose of the stream function is to annihilate the above-cited tangential velocity
slips at the three surfaces. After substituting (36a, b) into (35b, c), we find

~#0¥ψ¥Z1¯®
¥
¥y

(p®~#φ), ~#0¥ψ¥y1¯
¥

¥Z
(p®~#φ), (38a, b)

or the biharmonic equation for the stream function,

~%ψ¯ 0, (39)

by cross-differentiating (38a, b) and adding. The boundary conditions for ψ are shown
in figure 4.

5.2.1. Stream functions ψ
"
, ψ

#
and ψ

$

In order to cancel the velocity slip at the three walls, we introduce, by inspection, ψ
"

and ψ
#
to deal with the even and odd summations in (37b), respectively (see figure 5).

Let

ψ
"
¯

4

π$
3
¢

n=#,%,'
…

β
n
sin nπy

n
e−nπΖ, (40a)

ψ
#
¯

y®"

#

2π 3
¢

n=",$,&
…

A
n
sin nπy

n
e−nπZ. (40b)

The composite stream function (ψ
"
­ψ

#
) maintains the surfaces y¯ 0 and y¯ 1 as

streamlines but (unfortunately) it does not maintain Z¯ 0 as a streamline. To rectify
this, we introduce, by inspection,

ψ
$
¯®

4

π$
3
¢

n=#,%,'
…

βW
n
(1­nπΖ) sin nπy e−nπΖ, (41)

where βW
n
¯ const. are defined in (A 6). The composite stream function,

ψ
"+#+$

¯ψ
"
­ψ

#
­ψ

$
, (42)
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F 5. The satisfaction of the boundary conditions on the three surfaces by the successive
superposition of φ and ψ

j
( j¯ 1, 2, 3, 4). SL¯ streamline; slip¯ tangential velocity slip.

vanishes on all surfaces, including Z¯ 0. Furthermore, ¥ψ
$
}¥Z¯ 0 on Z¯ 0, as may

be seen trivially from (41). Thus the no-slip boundary condition on Z¯ 0 is not
disturbed by the inclusion of ψ

$
.

The last step in the solution for the stream function is the introduction of ψ
%
.

Physically, the purpose of ψ
%
is to implant a vorticity distribution on walls y¯ 0, 1 to

annihilate the velocity slips there, without disturbing the boundary conditions on Z¯
0. This leads to an integral equation for this vorticity distribution.

5.2.2. Stream function ψ
%

To obtain ψ
%
we indeed follow a formal route. Let ψh

n
(n¯ 1, 2, 3,…) denote the sine-

transform of ψ
%
as per (A 2). The relevant equation, the transform of the biharmonic

equation, becomes

0 d#

dZ#

®n#π#1#ψh
n
¯ (®4nπF(Z),

0,

n¯ 2, 4, 6,…

n¯ 1, 3, 5,…
(43a)
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where we have set ψ
%
¯ 0 on y¯ 0, 1, and

on y¯ 0
¥#ψ
¥y#

¯F(Z) ; (43b)

on y¯ 1
¥#ψ
¥y#

¯®F(Z) (by symmetry). (43c)

Thus, the unknown vorticity distribution on the lower wall is F(Z). In order to preserve
the already correct boundary condition on Z¯ 0, we require

on Z¯ 0 ψh
n
¯

¥ψh
n

¥Z
¯ 0, n¯ 1, 2, 3,… (43d )

The formal solution for the transform given above (non-trivial only for even values
of n) is obtained by the use of the Green function. The solution is

ψ
%
¯ψ

%
(y,Z)¯®4π&

¢

!

F(ξ) dξ 3
¢

n=#,%,'
…

G(ξ,Z) n sin nπy, (44a)

where G(ξ,Z) is the Green function with the (dummy) variable ξ replacing the ‘field
point ’ and Z replacing the ‘source point.’ In any case, G is symmetric in its two
arguments (the subscript n on G is not used) where

G¯G(Z,Z
!
)¯

1

4π$n$

²1­nπrZ®Z
!
r´ e−nπrZ−Z!

r

®
1

4π$n$

²1­nπ(Z­Z
!
)­2n#π#ZZ

!
´ e−nπ(Ζ+Ζ

!). (44b)

The wall-vorticity distribution F¯F(Z) must be so chosen that the slip produced by
ψ

$
on y¯ 0 is cancelled by that of ψ

%
(see figure 5). Let

g(Z)¯®
¥ψ

$

¥y )
y=!

¯
4

π#
3
¢

n=#,%,'
…

nβW
n
(1­nπZ) e−nπΖ, (45a)

where ψ
$

is given by (41). Then this requirement reduces to, via (44) and (45a),

g(Z)¯®4π#&
¢

!

F(ξ) 3
¢

n=#,%,'
…

n#G(ξ,Z) dξ, (45b)

or to

g(Z)¯&
¢

!

F(ξ) +(ξ,Z) dξ, (45c)

where +(ξ,Z) is the symmetric kernel of the integral equation, obtained by analytically
evaluating the infinite series in (45b). Since the left-hand side of (45c) is known, this
equation is a Fredholm integral equation of the first kind for the wall vorticity, F¯
F(Z), 0%Z!¢. It may be shown that + is given by

2π+(ξ,Z)¯²log (1®e−#πrZ−ξ r)®log (1®e−#π(Z+ξ))´

®( πrZ®ξ r
sinhπrZ®ξ r

e−πrZ−ξ r®
π(Z­ξ )

sinhπ(Z­ξ )
e−π(Z+ξ)*­ 2π#Zξ

sinh#π(Z­ξ )
, (45d )

where 0% ξ!¢ and 0%Z!¢. For ξ near Z, + behaves as (2π)−" log rZ®ξ r.
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Integral equation (45c) is solved numerically by converting it into a system of linear
algebraic equations. The left-hand side of (45c), g(Z), and the numerical solution of
this integral equation are shown in figures 6(a) and 6(b), respectively. Note, in
particular, that g«(0) is finite (see inset, figure 6a).
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5.3. The streamwise �orticity

The scaled streamwise vorticity of the secondary flow follows from the Laplacian of the
stream functions,

ω
x
¯~#(ψ

"+#+$
­ψ

%
). (46a)

The actual x-vorticity, owing to this effect, is ε#p(")
ξξ (ξ, 0)ω

x
. A larger contribution to this

component of the vorticity also arises from ε¥wW (!)}¥y ; a contribution that is passive
(and dynamically uninteresting) since it is essentially the y-derivative of the canonical
boundary layer profile (see (18e) and figure 2).

From (40a,b), (41) and (44), we find

ω
x
¯ω

x
(y,Z)¯ 3

¢

n=",$,&
…

A
n
cos nπy e−nπZ­

8

π 3
¢

n=#,%,'
…

n#βW
n
sin nπy e−nπZ

­sin 2πy&
¢

!

F(ξ ) ( 1

cosh 2π(Z®ξ )®cos 2πy
®

1

cosh 2π(Z­ξ )®cos 2πy

®
4πξ sinh 2π(Z­ξ )

[cosh 2π(Z­ξ )®cos 2πy]#*dξ. (46b)

In arriving at (46b), the Laplacian of the infinite series in (44) was summed in closed
form.

For an accurate numerical evaluation of (46b), the slowly converging part of the
second series (terms that decay as O(n−") for large n) must be handled separately. Even
more important is the proper treatment of the three integrands in the braces, all of them
posing problems as yU 0+, 1− (i.e. at the horizontal walls). For example, when the
variable of integration, ξ, is near Z and yU 0+, the first integrand in the braces behaves
as δ(Z®ξ )}y, where δ is the delta function. By subtracting these ill-behaved
contributions, and dealing with them separately, it is possible to obtain accurate results
(e.g. figure 8).

6. Discussion and conclusions

We begin our discussion with a simple and concrete example, that of the wavy-wall
problem. Let

z¯ f(ξ )¯ sin ξ, (47a)

so that from (10d ) and (19) we find the perturbation pressure, p("), in the outer field,

p(")¯ e−ζ cos ξ (47b)
and

p(")
ξξ (ξ, 0)¯®cos ξ. (47c)

The next-order correction comes from (11), subject to boundary condition (29a) ; the
solution is

p(#)¯ "

#
e−#ζ sin 2ξ­

γ

π
e−ζ cos ξ. (47d )

Note the presence in the equation above of sin 2ξ caused by nonlinear effects arising
from the boundary condition, (29a). A physical interpretation follows below.

For our second, and general, example, consider

z¯ f(ξ ), (48a)
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where f(ξ ) is an infinitely smooth function vanishing sufficiently fast as ξU³¢. The
lowest-order perturbation pressure is given by

p(")¯ p(")(ξ, ζ )¯®
1

π&
¢

−¢

f «(ξ
o
) log [(ξ®ξ

!
)#­ζ #]"/#dξ

!
, (48b)

so that

p(")
ξξ (ξ, 0)¯®

1

π&
¢

−¢

f¨(ξ
!
) log rξ®ξ

!
rdξ

!
(48c)

after two integrations by parts.
Thus, in both examples, the ‘scale factor,’ p(")

ξξ (ξ, 0), that determines the algebraic
sign and strength of the secondary vorticity is dependent on the (weighted) third
derivative of the cylinder shape. To illustrate this point, consider two cylinder shapes,
for ®¢! ξ!¢, defined by

f(ξ )¯ e−ξ# (49a)
and

f(ξ )¯ ξ e−ξ#. (49b)

The former is an even function of ξ, whereas the latter is an odd function. The third
derivatives of these functions and the corresponding values of p(")

ξξ (ξ,0), obtained from
a numerical evaluation of (48c), are shown in figure 7. It is clear that p(")

ξξ (ξ, 0) mimics
f¨(ξ ) very closely, so we may use these two quantities interchangeably in a physical
discussion. In particular, it is the rate of change of the curvature that determines the
strength of the vorticity associated with the secondary flow. Paradoxically, the
secondary flow pattern is more pronounced for a slender body, for which the curvature
changes significantly from the leading edge to the mid-chord position, than for a bluff
body (i.e. approximately a circular cylinder), for which the curvature is relatively
constant.

Contours of the scaled streamwise vorticity, ω
x
¯ω

x
(y,Z), (see (46b)) are shown in
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figure 8. Only contours for positive ω
x

are shown for ease of visualization; the
corresponding negative vorticity contours are mirror images, about y¯ 0±5, of those
shown. The inset depicts the vortex pattern schematically. With reference to the lower
corner, the secondary flow is controlled by two counter-rotating vortices that are
nearly mirror images of each other about the line emanating at 45° from either wall.
There is absolutely no evidence from the theoretical analysis or the very carefully
constructed numerical procedure for the existence of a family of corner vortices.
Evidently, our pair of corner vortices is large enough, with a characteristic length scale
(say, O(0±5)), so that self-similarity does not exist.

It is important to inquire about the physical origin of the streamwise vorticity, Ω[i.
Since the undisturbed flow carries only Z-vorticity, one candidate for the generation of
streamwise vorticity is the vortex tilting mechanism contained in the vortex stretching
term Ω[¡u, where Ω¯¡¬u is the vorticity. Although this mechanism is operative in
the outer flow, and hence at the outer edge of the inner flow, it is too weak to appear
in the streamwise vorticity of the secondary flow, which is dominated by
(¥wW k}¥y®¥�W k}¥z) at O(ε#).

In essence, the secondary flow is entirely controlled by viscous diffusion. The
bounding surfaces y¯ 0, 1 and Z¯ 0 act as the source of vorticity. Owing to the
streamwise acceleration}deceleration of the flow around the cylindrical body, a flow in
the cross-plane is generated by apparent (distributed) mass sinks}sources according to
(35a). This idea is clearly illustrated in figure 3. In order to satisfy the no-slip boundary
condition, the bounding surfaces provide the necessary vorticity, which diffuses into
the region of interest to establish the pattern shown in figure 8. Note that the contour
ω
x
¯ 0 does not pass through the corners because the slip velocity induced by the

potential φ¯φ(y,Z) changes its algebraic sign on Z¯ 0 in the vicinity of the corners.

I wish to thank my colleague, Dr Edward J. Kerschen, for his willingness to act as
a sounding board.
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Appendix. Useful formulae

The notation in this Appendix is self-contained. The purpose is to document some
formulae, without their derivation, to facilitate the reading of the main body of the
paper. Interested readers may check the validity of the formulae theoretically or
numerically to any degree of accuracy.

A.1. Fourier cosine- and sine-transforms

Let f¯ f(y) be a function defined on the interval (0, 1). The finite Fourier cosine- and
sine-transforms are defined, respectively, as

fc
n
¯ 2&"

!

f(y) cos nπy dy, n¯ 0, 1, 2,… (A 1a)

f(y)¯
fc
!

2
­3

¢

n="

fc
n
cos nπy, (A1b)

fh
n
¯ 2&"

!

f(y) sin nπy, n¯ 1, 2, 3,…, (A 2a)

f(y)¯ 3
¢

n="

fh
n
sin nπy. (A2b)

A.2. The parity index

For integer values of n and m, define

ε
nm

¯ε
mn

¯
1

2

3

4

1 for n®m¯®(m®n)¯odd

0 otherwise.
(A 3a)

Thus, we may compactly express the two series

σ
m

¯

1

2

3

4

3
¢

n=",$,&
…

b
mn

for m¯ 0, 2, 4, 6,…

3
¢

n=#,%,'
…

b
mn

for m¯ 1, 3, 5,…

(A3b)

by the notation

σ
m

¯ 3
¢

n="

b
mn

ε
nm

, m¯ 0, 1, 2, … (A 3c)

A.3. Definitions and identities

A.3.1. Definitions

β
n
¯ 3

¢

m=",$,&
…

m#A
m

(m#®n#)#
, n¯ 2, 4, 6, … (A4a)

¯O 0 1

n#
1 as nU¢. (A 4b)

δ
n
¯ 3

¢

m=",$,&
…

A
m

(m#®n#)#
, n¯ 2, 4, 6, … (A5a)

¯O0 1

n%
1 as nU¢. (A 5b)
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βW
n
¯

β
n

n
®nδ

n
, n¯ 2, 4, 6,… (A 6a)

¯O0 1

n$
1 as nU¢. (A 6b)

A.3.2. Identities

3
¢

n=",$,&
…

A
n

n#

¯ 0, (A 7)

(y®"

#
) cos nπy¯®

8n#

π#
3
¢

m="

ε
nm

cosmπy

(m#®n#)#
­

1

nπ
sin nπy

®"

#
­

8n#

π#
3
¢

m="

ε
nm

(m#®n#)#
, n¯ 1, 2, 3,…, (A8)

where

3
¢

m="

ε
nm

(m#®n#)#
¯

1

2

3

4

π#

16n#
01®

8

π#n#
1 , n¯ 1, 3, 5,…

π#

16n#

, n¯ 2, 4, 6,…,

(A9)

(y®"

#
) sin nπy¯®

8n

π#
3
¢

m="

mε
nm

sinmπy

(m#®n#)#
, n¯ 1, 2, 3,… . (A 10)
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